Command Pattern
[bookmark: more]A Command Pattern says that "encapsulate a request under an object as a command and pass it to invoker object. Invoker object looks for the appropriate object which can handle this command and pass the command to the corresponding object and that object executes the command".
It is also known as Action or Transaction.
These are the following participants of the Command Design pattern:
· Command This is an interface for executing an operation.
· ConcreteCommand This class extends the Command interface and implements the execute method. This class creates a binding between the action and the receiver.
· Client This class creates the ConcreteCommand class and associates it with the receiver.
· Invoker This class asks the command to carry out the request.
· Receiver This class knows to perform the operation.

[image: ]

Advantage of command pattern
· It separates the object that invokes the operation from the object that actually performs the operation.
· It makes easy to add new commands, because existing classes remain unchanged.

Usage of command pattern:
It is used:
· When you need parameterize objects according to an action perform.
· When you need to create and execute requests at different times.

Implementation of Command Design Pattern

1. Define a Command interface having an execute method execute().
2. All command objects must implements a Command interface. The execute method delegates the request to a receiver to execute the command.
3. A receiver class holds the logic of performing any specific task requested as command. It is called from execute method of command object.
4. The client creates a set of command objects and associates receiver with it. Client passes commands to invoker to store it. Later, client calls invoker to execute the commands.


Here is a sample code of a classic implementation of this pattern for placing orders for buying and selling stocks:
We have created an interface Order which is acting as a command. We have created a Stock class which acts as a request. We have concrete command classes BuyStock and SellStock implementing Order interface which will do actual command processing. A class Broker is created which acts as an invoker object. It can take and place orders.

Broker object uses command pattern to identify which object will execute which command based on the type of command. CommandPatternDemo, our demo class, will use Broker class to demonstrate command pattern.
[image: Command Pattern UML Diagram]
Step 1
Create a command interface.
Order.java
public interface Order {
   void execute();
}
Step 2
Create a request class or Receiver
Stock.java
public class Stock {	
   private String name = "ABC";
   private int quantity = 10;
   public void buy(){
      System.out.println("Stock [ Name: "+name+", 
         Quantity: " + quantity +" ] bought");
   }
   public void sell(){
      System.out.println("Stock [ Name: "+name+", 
         Quantity: " + quantity +" ] sold");
   }
}





Step 3
Create concrete classes implementing the Order interface.
BuyStock.java
public class BuyStock implements Order {
   private Stock abcStock;
   public BuyStock(Stock abcStock){
      this.abcStock = abcStock;
   }
   public void execute() {
      abcStock.buy();
   }
}

SellStock.java
public class SellStock implements Order {
   private Stock abcStock;
   public SellStock(Stock abcStock){
      this.abcStock = abcStock;
   }
   public void execute() {
      abcStock.sell();
   }
}



Step 4
Create command invoker class.
Broker.java
import java.util.ArrayList;
import java.util.List;

   public class Broker {
   private List<Order> orderList = new ArrayList<Order>(); 
   public void takeOrder(Order order){
      orderList.add(order);		
   }
   public void placeOrders(){   
      for (Order order : orderList) {
         order.execute();
      }
      orderList.clear();
   }
}
Step 5
Client class. Use the Broker class to take and execute commands.
CommandPatternDemo.java
public class CommandPatternDemo {
   public static void main(String[] args) {
      Stock abcStock = new Stock();
      BuyStock buyStockOrder = new BuyStock(abcStock);
      SellStock sellStockOrder = new SellStock(abcStock);
      Broker broker = new Broker();
      broker.takeOrder(buyStockOrder);
      broker.takeOrder(sellStockOrder);
      broker.placeOrders();
   }
}
Step 6
Verify the output.
Stock [ Name: ABC, Quantity: 10 ] bought
Stock [ Name: ABC, Quantity: 10 ] sold




[bookmark: _GoBack]
Another example

Let's use a remote control as the example. Our remote is the center of home automation and can control everything. We'll just use a light as an example, that we can switch on or off, but we could add many more commands.

// A simple Java program to demonstrate 
// implementation of Command Pattern using 
// a remote control example. 

// An interface for command 
interface Command 
{ 
	public void execute(); 
} 

// Light class (Receiver class)  
class Light 
{ 
	public void on() 
	{ 
		System.out.println("Light is on"); 
	} 
	public void off() 
	{ 
		System.out.println("Light is off"); 
	} 
} 
// and its corresponding command classes
class LightOnCommand implements Command 
{ 
	Light light; 

	// The constructor is passed the light it 
	// is going to control. 
	public LightOnCommand(Light light) 
	{ 
	this.light = light; 
	} 
	

         public void execute() 
	{ 
	light.on(); 
	} 
} 
class LightOffCommand implements Command 
{ 
	Light light; 
	public LightOffCommand(Light light) 
	{ 
		this.light = light; 
	} 
	public void execute() 
	{ 
		light.off(); 
	} 
} 

// Stereo (Receiver class ) 

class Stereo 
{ 
	public void on() 
	{ 
		System.out.println("Stereo is on"); 
	} 
	public void off() 
	{ 
		System.out.println("Stereo is off"); 
	} 
	public void setCD() 
	{ 
		System.out.println("Stereo is set " + 
						"for CD input"); 
	} 
	public void setDVD() 
	{ 
		System.out.println("Stereo is set"+ 
						" for DVD input"); 
	} 
	public void setRadio() 
	{ 
		System.out.println("Stereo is set" + 
						" for Radio"); 
	} 
	public void setVolume(int volume) 
	{ 
	// code to set the volume 
	System.out.println("Stereo volume set"
						+ " to " + volume); 
	} 
} 
class StereoOffCommand implements Command 
{ 
	Stereo stereo; 
	public StereoOffCommand(Stereo stereo) 
	{ 
		this.stereo = stereo; 
	} 
	public void execute() 
	{ 
	stereo.off(); 
	} 
} 
// and its corresponding command classes
class StereoOnWithCDCommand implements Command 
{ 
	Stereo stereo; 
	public StereoOnWithCDCommand(Stereo stereo) 
	{ 
		this.stereo = stereo; 
	} 
	public void execute() 
	{ 
		stereo.on(); 
		stereo.setCD(); 
		stereo.setVolume(11); 
	} 
} 

// Invoker - A Simple remote control with one button 
class SimpleRemoteControl 
{ 
	Command button; // only one button 

	public SimpleRemoteControl() 
	{ 
	} 

	public void setCommand(Command command) 
	{ 
		// set the command the remote will 
		// execute 
		button = command; 
	} 

	public void buttonWasPressed() 
	{ 
		button.execute(); 
	} 
} 

// Driver class or client class
class RemoteControlTest 
{ 
	public static void main(String[] args) 
	{ 
		SimpleRemoteControl remote = 
				new SimpleRemoteControl(); 
		Light light = new Light(); 
		Stereo stereo = new Stereo(); 

		// we can change command dynamically 
		remote.setCommand(new
					LightOnCommand(light)); 
		remote.buttonWasPressed(); 
		remote.setCommand(new
				StereoOnWithCDCommand(stereo)); 
		remote.buttonWasPressed(); 
		remote.setCommand(new
				StereoOffCommand(stereo)); 
		remote.buttonWasPressed(); 
	} 
}


Watch Out for the Downsides
This pattern ends up forcing a lot of Command classes that will make your design look cluttered - more operations being made possible leads to more command classes. Intelligence required of which Command to use and when leads to possible maintainence issues for the central controller.

Another example of command pattern



Link to another command pattern example
https://www.avajava.com/tutorials/lessons/command-pattern.html?page=2
11

image1.gif
Invoker

Command

Receiver

vaction()void

<cinstartiate-~

vexeate(yvoid

stateint

vexeate(yvoid





image2.jpeg
stock

Command?attembemo
name sstring | uses
quantity :int_fe—]
+main() : void
+buy() :void
4sell) :void
Broker
Order | <cinterface>> -orders :ist
uses
— [ +takeorder() : void
+execute() : void +placeOrdersl] :void
implements 1\mD‘E"¥E"ﬂ
Buystock Selstock
stock :Stock stock :Stock
~Buystock]) Ssellstock()
sexecute() sexecutel)





