State Design Pattern
The state pattern is a behavioral design pattern. A allows an object to alter its behavior when its internal state changes. The object will appear to change its class.
It can be drawn from above definition that there shall be a separate concrete class per possible state of an object.
Benefits:
· It keeps the state-specific behavior.
· It makes any state transitions explicit.
Usage:
· When the behavior of object depends on its state and it must be able to change its behavior at runtime according to the new state.
· It is used when the operations have large, multipart conditional statements that depend on the state of an object.
State Design Pattern Interface
[image: State-Design-Pattern]
Design participants
· State – The interface define operations which each state must handle.
· Concrete States – The classes which contain the state specific behavior.
· Context – Defines an interface to client to interact. It maintains references to concrete state object which may be used to define current state of object. It delegates state-specific behavior to different State objects.
Real time use case
Suppose we want to implement a TV Remote with a simple button to perform action. If the State is ON, it will turn on the TV and if state is OFF, it will turn off the TV.
We can implement it using if-else condition like below.
public class TVRemoteBasic {

	private String state="";
	
	public void setState(String state){
		this.state=state;
	}
	
	public void doAction(){
		if(state.equalsIgnoreCase("ON")){
			System.out.println("TV is turned ON");
		}else if(state.equalsIgnoreCase("OFF")){
			System.out.println("TV is turned OFF");
		}
	}

 public static void main(String args[])
 {
		TVRemoteBasic remote = new TVRemoteBasic();
		
		remote.setState("ON");
		remote.doAction();
		
		remote.setState("OFF");
		remote.doAction();
	}

 }

Notice that client code should know the specific values to use for setting the state of remote. Further more if number of states increase then the tight coupling between implementation and the client code will be very hard to maintain and extend.

Now we will use State pattern to implement above TV Remote example.
[bookmark: _GoBack]First of all we will create State interface that will define the method that should be implemented by different concrete states and context class.

public interface State {

	public void doAction();
}

State Design Pattern Concrete State Implementations
In our example, we can have two states – one for turning TV on and another to turn it off. So we will create two concrete state implementations for these behaviors.
public class TVStartState implements State {

	@Override
	public void doAction() {
		System.out.println("TV is turned ON");
	}

}

public class TVStopState implements State {

	@Override
	public void doAction() {
		System.out.println("TV is turned OFF");
	}

}

Now we are ready to implement our Context object that will change its behavior based on its internal state.
public class TVContext implements State {

	private State tvState;

	public void setState(State state) {
		this.tvState=state;
	}

	public State getState() {
		return this.tvState;
	}

	@Override
	public void doAction() {
		this.tvState.doAction();
	}
}

Notice that Context also implements State and keep a reference of its current state and forwards the request to the state implementation.

A simple program to test our state pattern implementation of TV Remote.

public class TVRemote {

	public static void main(String[] args) {
		TVContext context = new TVContext();
		State tvStartState = new TVStartState();
		State tvStopState = new TVStopState();
		
		context.setState(tvStartState);
		context.doAction();
		context.setState(tvStopState);
		context.doAction();
		
	}

}

State Design Pattern Benefits
The benefits of using State pattern to implement polymorphic behavior is clearly visible. The chances of error are less and it’s very easy to add more states for additional behavior. Thus making our code more robust, easily maintainable and flexible. Also State pattern helped in avoiding if-else or switch-case conditional logic in this scenario.

3

image1.png

